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Geometric approach to the pressure tensor and the elastic constants
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Expressions are obtained for the pressure tensor in the canonical and the microcanonical ensemble for both
isolated and periodic systems, using the same geometric approach to thermodynamic derivatives as has been
used previously to define the configurational temperature. The inherent freedom of the method leads to a
straightforward proof of the equivalence of atomic and molecular pressures, for short molecules and for
molecules exceeding the dimensions of a periodic simulation box. The effect of holonomic constraints on the
pressure is discussed. Expressions for the elastic constants are derived in the same manner.
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I. INTRODUCTION

A number of recent papers have discussed an intui
geometric approach to the partial derivatives of thermo
namic potentials, as appearing in statistical mechanics
atomic simulations@1–6#. Any partition function, i.e., the
phase space integral underlying a thermodynamic poten
can be expressed as an integral over a surface defined b
characteristic variables of that potential. The basic idea, n
is that the derivative of a surface integral, with respect t
parameter defining that surface, can itself be expressed a
integral over the very same surface. By expressing the
placements of the surface elements under an infinites
parameter change as a vector field, the change of the
grand during the displacement is readily calculated, to fi
order, as the dot product of the vector field and the grad
of the integrand. The accompanying change of the area o
surface element also follows from the vector field, again
first order. Integrating both contributions over the surfa
area yields the desired result, in this case the derivative
partition function.

Although the vector field must correspond to a bijecti
projection, there still is ample freedom in its constructio
Consider, for example, the energy derivative of the entro
in a microcanonical ensemble, i.e., the inverse temperat
The energy of a system of interacting atoms can be increa
by adding to every atomic momentum a vector proportio
to that momentum. With this vector field the usual relati
between the temperature and the overall kinetic energ
recovered @2,5#. Alternatively, one could simultaneousl
move all atoms along the gradient of the potential, i
against the forces. With this vector field one arrives at
recently introduced configurational temperature@1–5#, which
distills a temperature from the configurations sampled i
molecular dynamics or Monte Carlo simulation. As a seco
example, in reaction rate calculations the geometric appro
can be used to calculate the free energy profile along a r
tion coordinate, and hence the equilibrium constant and
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transition-state theory rate. The conventional thermodyna
integration method@7# and the potential of mean constrai
force method@8,9# are but two appearances of the one u
derlying geometric approach, obtained by introducing diff
ent vector fields@6#.

In Sec. II of this paper, we derive an expression for t
pressure by applying the geometric approach to the volu
derivative of the free energy in the canonical ensemble. T
common atomic pressure expressions are then arrived a
inserting a particular choice of the vector field. In Sec. III
different field leads to the common molecular pressure
pression, thus giving a direct proof of the thermodynam
equivalence of the two pressures. Alternative perspective
the pressure expressions are discussed. Expressions fo
elastic constants, in atomic, molecular, and mixed form,
derived in Sec. IV.

II. ATOMIC PRESSURE

The free energyA of a closed system is a function of th
temperatureT, the number of atomsN, and of the matrix of
edge vectorshO5(h1 ,h2 ,h3) specifying the location of the
enclosing walls. It proves advantageous to position the or
of the coordinate system at the center of the box. For i
nitely hard walls, the restriction that the coordinatesxi of the
i th atom must lie within the box then readu(hO 21xi)lu< 1

2 ,
with lP$1,2,3%. But for soft walls this condition is less
strict: although atoms are mostly within the box, there is
finite chance for an atom to penetrate deeply into the w
This is tacitly implied whenever we write that the particle
‘‘in the box hO . ’’ The free energy of a periodic system, a
commonly used in computer simulations, is also a funct
of N, T, andhO , wherehO denotes the matrix of edge vectors
the repeated cell. We shall follow the convention that t
atoms are at all times within the central boxhO ; the space
outside the box is filled with periodic images of the atom
inside the box. The discussion of periodic systems will
limited to short-ranged potentials, with a cutoff of less th
half the smallest box size. In addition, we assume that th
are no external body forces working on the system.

Regarding our notation, we will use bold lower case La
©2001 The American Physical Society04-1
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letters for three-dimensional vectors. The corresponding
per case is short-hand for a complete set of atomic vect
e.g., Va5$v1

a ,...,vN
a% with the superscripta acting as the

ordinal. Bold Greek letters are reserved for six-dimensio
vectors, and underscores are added to distinguish betw
vectors and matrices.

Under the above conditions, the potential energy of
system of interacting atoms is a function of the atomic co
dinates and of the box dimensions,F(X,hO ). This potential
can always be split into a part that explicitly depends on
box dimensions and a part that does not,F5U(X)
1W(X,hO ). For a nonperiodic system,U describes all inter-
atomic interactions andW captures the interactions betwee
atoms and the walls. In a periodic system,W includes all
interactions between atoms and periodic images of ato
i.e., those atom pairs for whichxi j 5xi2xj is larger than the
cutoff distance but which do interact after applying the ne
est image convention. This convention obviously mak
these interaction energies explicitly dependent on the
dimensions. The potentialU includes all direct interactions
i.e., those atom pairs for whichxi j is less than the cutof
distance.

For small perturbations of the box,hO→hO 85eOhO , we define
a deformation matrixeO and a deformation vector« by

eO~«!51O1S «1
1
2 «4

1
2 «5

1
2 «4 «2

1
2 «6

1
2 «5

1
2 «6 «3

D 51O1 (
a51

6

«abOa, ~1!

where thebOa’s represent the six independent deformations
the box. Rotations of the box are excluded here, as are tr
lations, since they do not affect the potential energy nor
free energy of the system. The factors1

2 are introduced to
adhere to conventions of the literature. The response of
system’s free energy to small perturbations is given bydA
52S dT2Vp•d«1m dN, whereS is the entropy,V5uhO u
the volume,p the pressure vector, andm the chemical po-
tential. At constantN andT, thea component of the pressur
then reads

pa52
1

V

]A

]«a
U

«50

5
1

V

kBT

Z~0!
lim

«a→0

Z~«aĥa!2Z~0!

«a
, ~2!

whereĥ a is a unit vector in theath direction. In the last step
we usedA52kBT ln(Z)1c, wherekB is Boltzmann’s con-
stant andc is an irrelevant function of the temperature. T
configuration integral reads

Z~«!5E
eO~«!hO

exp$2bF†X,eO~«!hO ‡%dX, ~3!

where the integrals run over the entire box~for soft walls this
could also have beenR3, see the comment at the start of th
section!, andb51/kBT.

In the evaluation of Eq.~2! it proves advantageous t
introduce a projection that coupleseverypoint X of the con-
figuration space in the boxeO(0)hO with a uniquepoint X8 of
01670
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the configuration space in the boxeO(«aĥa)hO , and vice versa.
In the limit of «a→0, such a projection is achieved by
configuration-dependent vector fieldVa @1–6#,

X85X1«aVa~X!. ~4!

This field allows us to express the partition function of t
deformed ensemble as an integral over the reference
semble,

Z~«aĥa!5E
eO~«aĥa!hO

exp$2bF@X8,eO~«aĥa!hO #%dX8

5E
eO~0!hO

exp$2bF@X1«aVa~X!,hO1«abOahO #%

3U]X8

]X UdX . ~5!

Taylor expanding the Jacobian of the coordinate transfor
tion of Eq. ~4! gives

US ]xil8

]xj m
DU5US d i j dlm1«a

]v il
a

]xj m
DU511«a(

i 51

N

(
l51

3 ]v il
a

]xil

1O~«a
2 !, ~6!

where d is the Kronecker delta. Both lowest order term
originate from the multiplication of the diagonal elements
the Jacobi matrix. Next, Taylor expanding the exponentia
Eq. ~5!, which contains«a twice, yields

Z~«aĥa!5E
hO

exp@2bF~X,hO !#

3S 12b«a(
i 51

N

(
l51

3

v il
a ]F~X,hO !

]xil
D

3S 12b«a (
l,m51

3
]F~X,hO !

]hlm
(
n51

3
]elnhnm

]«a
D

3S 11«a(
i 51

N

(
l51

3 ]v il
a

]xil
D dX1O~«a

2 !. ~7!

Multiplying the three terms in large parentheses, one rea
sees that the zeroth order term recoversZ(0), and that the
first order term produces the derivative ofZ needed in Eq.
~2!. Note how the geometric approach allows us to conv
the derivative of an integral into the integral of a derivativ
under conditions in which the two operations do not co
mute. Combining the above steps, and reverting to a m
compact notation, we arrive at our central pressure exp
sion,

pa5
kBT

V
^“X•Va&2

1

V
^Va

•“XF&2
1

V K ]F

]hO
:~bOahO !TL .

~8!

Here angular brackets denote a canonical average ove
reference boxhO , the colon indicates a double contractio
4-2
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GEOMETRIC APPROACH TO THE PRESSURE TENSOR . . . PHYSICAL REVIEW E 65 016704
and the superscriptT stands for transposed. The first term
the right-hand side measures the change of the acces
volume of configuration space during the box deformation
is the only term that would remain for an ideal gas. T
second and third term describe the change of the pote
energy accompanying the deformation of the box and
contents. In Appendix A we derive the equivalent express
for the microcanonical ensemble.

At this point we want to stress that one is free to choo
any convenientVa, subject only to the condition that thehO
→hO 8 projection must be a bijection. This one-to-one ma
ping is essential when writing the integral over the deform
ensemble as an integral over the reference ensemble. I
sures that by integrating over theentire reference ensembl
we sample theentire deformed ensemble in a consiste
manner, without omissions, without double counting, a
with traceable corrections for the dilations and contractio
incurred during the projection. It therefore guarantees t
the derivative of the integral, in this case the pressure,
comes independent of the chosen projection method. S
care is needed in simulations, however, as the converg
rate of the averages in Eq.~8! may strongly depend on th
chosen field.

An obvious choice for the vector field is to distort th
conformation inside the box in the same way as the b
itself. This choice is commonly made when deriving the h
drostatic pressure,p5 1

3 (a51
3 pa , from the free energy

change under a uniform scaling of the box@10#. For the six
box deformations considered here, the vector fields are
of the form

vi
a5 lim

«a→0

eO ~«aĥa!xi2xi

«a
5bOaxi . ~9!

Inserting this field into Eq.~8!, and using the aforementione
partitioning of the potential energy, gives

pa5
NkBT

V
Da2

1

V K (
i

“ iU•bOaxi L 2
1

V K (
i

“ iW•bOaxi L
2

1

V K ]W

]hO
:~bOahO !TL , ~10!

whereDa5Tr(bOa) equals one fora<3 and zero otherwise
The first two terms on the right-hand side reproduce the
unique elements of the regular pressure matrix@11#. We
show below that the sum of the last two terms is vanishin
small in the thermodynamic limit of increasingN and V to
infinity at constantN/V. Although it is stated in the literature
that the pressure of a periodic system can only be expre
in terms of a double summation,vide infra, Eq. ~10! is a
point to the contrary@11,12#.

We can split the total boundary force on the atoms of
system into six parts, one for each side of the box,wb

5( i“ iWu i
b , whereu i

b equals unity if thei th atom interacts
with the bth face and zero otherwise. On average,wb is
proportional to the area of thebth wall, directed perpendicu
lar to that wall, and of opposite sign to its counterpart of t
opposing wall. After multiplication by the coordinatesxi ,
01670
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which are about half the box dimension~becauseWiÞ0 we
only need to consider atoms near a wall! and are also of
opposite sign for opposite faces of the box, we conclude
(b( i“ iW•xiu i

b5( i ,a“ iW•bOaxiDa is of the order of the
volume of the box. This is easily verified by considering
rectangular box with a wall potential depending on the p
pendicular distance between the atom and the wall. In
particular system, the terms witha<3 are proportional to
the volume of the box and to the strength and range of
wall potential, while the terms witha>4 are identically
zero. The firstW term in Eq.~10! therefore makes anO(1)
contribution to the pressure. The secondW average is the
product of]W/]hO , which by the definition ofW is propor-
tional to the surface area, and a box dimension. Again,
yields anO(1) contribution to the pressure, as will also b
argued on different grounds at the end of this section. T
energy changes by moving the atoms towards the wall~the
first W average! and by moving the walls away from th
atoms~the secondW average! are roughly equal but of op
posite sign, and therefore largely cancel each other. The
mainder, after division byV, is less thanO(1), and may be
omitted from the pressure expression. This is also borne
by the observation thatW is a surface term, so its average
total derivativê ]W/]«a& @the sum of the twoW averages in
Eq. ~10!# is also proportional to the surface area, and the
fore contributes a termO(V21/3) to the pressure. Conse
quently, leaving out just the last term, retaining a press
expression of the form@13#

p̃a5
NkBT

V
Da2

1

V K (
i

“ iF•bOaxi L ~11!

is unfortunately not permitted. As the Nose´-Andersen
barostat of Ref.@14# is derived from the energy change und
a uniform scaling of the box, its equation of motion for th
volume momentum should therefore also containp rather
than p̃.

The interatomic interactions in simulations are more u
ally expressed in terms of the relative positions of all ato
pairs,R. By rewriting U in terms of direct difference vec
tors, R5$xi j %, the potential becomes F5U8(R)
1W(X,hO ). The boundary term still requires absolute coo
dinates. The energy change under a perturbationxi j →(xi

1«avi
a)2(xj1«avj

a) with a field of the form of Eq.~9! is
then straightforward, and Eq.~8! gives

pa5
NkBT

V
Da2

1

V K (
i , j

]U8

]xi j
•bOaxi j L

2
1

V K (
i

“ iW•bOaxi L 2
1

V K ]W

]hO
:~bOahO !TL , ~12!

which recovers the usual pressure expression in the ther
dynamic limit @11#. This result also follows directly from Eq
~10! for a pairwise additive potential,
4-3
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(
i

“ iU•bOaxi5
1
2 S (

iÞ j

]U8

]xi j
•bOaxi1(

j Þ i

]U8

]xj i
•bOaxj D

5
1

2 (
iÞ j

]U8

]xi j
•bOaxi j , ~13!

where Newton’s third law is used in the last step@11#.
Although the above expression also holds for perio

systems, it is not elegant to split the potential energy o
periodic system into an internalU and a boundaryW part, as
both terms are of the same origin. The entire potential ene
of such a system is more conveniently expressed by a si
function, F5U9(R) and R5$r i j %, through the use of the
nearest image convention,r i j 5xi j 2hOn(hO 21xi j ). Heren re-
turns a vector of the three nearest integers to its three a
ments~thus making the condition of placing all atoms insi
the central box superfluous!. In line with Eq. ~9!, the inter-
atomic vectors are perturbed intor i j →r i j 1«abOar i j , which
combines with Eq.~8! to give @11#

pa5
NkBT

V
Da2

1

V K (
i , j

]U9

]r i j
•bOar i j L . ~14!

Again, this result is derivable from Eq.~10!. For theU part
of the pressure the derivation is as stated above, where a
matically r i j 5xi j because of the definition ofU. Applying
the same steps to the third term on the right-hand side of
~10! gives2^( i , j]W/]r i j •bOaxi j &, with all xi j exceeding the
cutoff distance by definition. Only when the last term of E
~10! is added, which expressed as a sum of atomic inte
tions gives

]W

]hO
:~bOahO !T5(

i , j

]W@xi j 2hOn~hO 21xi j !#

]hO
:~bOahO !T

52(
i , j

S ]W~r i j !

]r i j
•

]hOn~hO 21xi j !

]hO D :~bOahO !T

52(
i , j

]W

]r i j
bO ahOn~hO 21xi j !, ~15!

are the absolutexi j converted into the nearest image vecto
r i j needed to complete the proof. The manipulations of b
W terms are based upon the assumption that the neares
teger periodicity correctionn(hO 21xi j ) is unaffected by the
box and coordinate changes, as is the case if the range o
potential is sufficiently small with respect to the box dime
sions. In the last step of Eq.~15! we used]hbg /]hlm
5dbldgm . Some authors@13,14# derived Eq.~14! from Eq.
~11! by employing Newton’s third law and simply interpre
ing every occurrence of anxi j as anr i j , thus in the process
inadvertently addingV21( i , j]F/]r i j •bOa(xi j 2r i j ) to the
pressure. Using the above results, it is straightforward
show that this extra term exactly retrieves the]W/]hO term
that was left out in going from Eq.~10! to Eq.~11!, as was to
be expected.

Another well-known pressure expression is recove
when we consider a system with soft walls under a box
01670
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formation small compared to the width of the wall potenti
The configurations in thehO and eOhO boxes of Eq.~2! then
sample exactly the same set of configurations~XPR3N, see
the comment at the start of this section!, be it with slightly
different Boltzmann factors because of the shifted wall p
tential. Under these conditions a simple vector fieldVa50
already suffices to calculate the pressure. Equations~8! and
~10! are then reduced to just their last term, recovering
trivial result that the pressure is the force exerted on
walls per unit area. This kind of argument cannot be appl
to systems with infinitely hard walls, nor to periodic system
as there thehO andeOhO boxes do not sample identical sets
configurations.

III. MOLECULAR PRESSURE

So far, we have shown how the geometric approach
covers the conventional atomic pressure expressions. Th
teresting feature of the approach is that we are not limited
this single field of Eq.~9!. For molecular systems, for in
stance, it proves advantageous to introduce a field in wh
entire molecules are moved as rigid bodies. In a two-ind
notation, with the Greek index referring to a molecule a
the Latin index referring to either an atom (1< i<Nl) of
this molecule or to the entire molecule (i 50), the proposed
field reads

vl i
a 5vl0

a 5bOaxl0 . ~16!

The coordinate of the molecule is conveniently identifi
with the center of mass of the molecule,xl0

5ml0
21( i 51

Nl ml i x̃l i with massesml i . In a periodic system
the coordinates ought to be ‘‘unfolded’’ to restore any bon
that were broken by placing the individual atoms in the ce
tral box. The unfolded atoms may lie outside the box and
therefore marked by a tilde; the resulting center of massx̃l0
is then replaced by its periodic copyxl0 within the box. But,
one could equally well opt for, say, the coordinate of the fi
atom of the molecule,xl05xl1 . As will be shown in Appen-
dix B, expressing the vector field in the above form impli
that a molecule may interact with at most one copy of ev
other molecule. This condition is obviously met in nonpe
odic systems. In periodic systems, it requires the molecu
to be small with respect to the box dimensions. Long m
ecules in periodic boxes are discussed in Appendix B, al
with a more extensive discussion of the above issues.

In order for a vector field to be acceptable for the geom
ric approach, it must correspond to a bijective projecti
from thehO box to theeOhO box. This is readily shown to be th
case in a periodic system and in a box surrounded by
walls. But, strictly speaking, this is not the case in a box w
infinitely hard walls—if a cubic box with sidesh is elongated
in thex direction, there will be no molecules in the elongat
box that touch the walls atx56(11«1)h/2 with just a
single atom—though the error is negligible in the thermod
namic limit. We may now introduce the field of Eq.~16! into
Eq. ~8!. Substitution of either of the above choices forxl0

into the divergence term gives( i 51
Nl

“l i•vl i
a 5Da for each of

the n molecules. With the centers of the molecules loca
4-4
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inside the box, one trivially arrives at the well-known e
pression fornonperiodicsystems@15#

pa5
nkBT

V
Da2

1

V K (
l51

n

(
i 51

Nl

“l iU•bOaxl0L
2

1

V K (
l51

n

(
i 51

Nl

“l iW•bOaxl0L 2
1

V K ]W

]hO
:~bOahO !TL ,

~17!

where theW terms again vanishes in the thermodynam
limit. Expressing the potential energy in terms of the relat
positions, as in Eq.~14!, directly yields the familiar molecu-
lar pressure expression for the periodic system@11,12#

pa5
nkBT

V
Da2

1

V S (
l,m

n

(
i 51

Nl

(
j 51

Nm ]U9

]rl i ,m j
•bOarl0,m0D .

~18!

The summation overi andj yields the total force between th
moleculesl and m. All intramolecular contributions have
vanished here because the rigid body translation leaves
internal coordinates and internal energy untouched~this does
not hold true for long molecules in a periodic box, see A
pendix B!. Note how both the atomic and molecular press
expressions, Eqs.~10! and ~14! vs Eqs.~17! and ~18!, have
been derived from the central expression of Eq.~8! by se-
lecting two convenient vector fields, which implies that bo
definitions are thermodynamically equivalent. Alternati
ways of proving this result have appeared in Refs.@12# and
@15#.

An advantage of the molecular pressure over the ato
pressure is that it is far less noisy, because the strong
high frequency intramolecular contributions are omitted@12#.
A second advantage is that the intramolecular constra
which are often introduced in simulations to increase
time step@7,11,15#, do not contribute either. In the atom
pressure calculation, it is common practice to include
constraint forces in Eq.~14! in the same way as the potenti
forces. In the geometric approach, however, the way to t
constraints is to construct a vector field that corresponds
box deformation whilst simultaneously maintaining all co
straints@6#. Consider, for example, a system of rigid dum
bells. If vl i

a 5bOarl i is the unconstrained atomic vector fie
and r̂l is the unit vector parallel to thelth molecule, then a
valid constrained field reads

v̄l1
a 5vl1

a 1 1
2 r̂l@~vl2

a 2vl1
a !• r̂l#,

v̄l2
a 5vl2

a 2 1
2 r̂l@~vl2

a 2vl1
a !• r̂l#. ~19!

The added terms ensure that this vector field is perpendic
to the gradient of the constrained bond length. The dumb
is thus translated as a rigid body, and at the same time rot
to align with the applied box deformation. Substitution
this field in Eq.~8! leads to a pressure expression devoid
the constraint forces~even if we were to explicitly introduce
them in the normal fashion, they would be orthogonal toV̄a

and drop out!.
01670
e

he

-
e

ic
nd

ts,
e

e

at
a

lar
ll
ed

f

These ideas are now generalized to systems with mult
internal constrained coordinates,slr(X)50 with r
P$1, . . . ,Rl%, per molecule. In a molecular dynamics sim
lation these constraints are imposed by adding constr
forces of the formf l i

c 5( r 51
Rl llr“l islr to the existing po-

tential forces. The Lagrange multipliersllr are conveniently
obtained numerically by demanding that the constraints
obeyed after every time step, as in theSHAKE algorithm@16#.
Analytically, solving the Cartesian equations of motion a
equating the first and second time derivatives of the c
strained coordinates to zero, yields the multipliers@7#

llr5(
s51

Rl

~ZO l
21!rsS (

i 51

Nl

ml i
21

“l isls•“l iF

2 (
i , j 51

Nl

ẋl i•“l i“l jslsẋl j D , ~20!

with overhead dots indicating a time derivative, and with t
Rl3Rl matrices

~ZO l!rs5(
i 51

Nl

ml i
21

“l islr•“l isls . ~21!

Because of the constraints, the Cartesian velocities are
related by@6,15#

^ẋl i ẋm j
T &c5dlmkBTF d i j

ml i
1O2 (

r ,s51

Rl

~ZO l
21!rs

“l islr“l j
T sls

ml iml j
G ,

~22!

where ^¯&c denotes the average over the constrained
semble. The sampled configuration integral reads

Zc~«!5E
eO~«!hO

exp$2bF„X,eO~«!hO …%z1/2

3 )
l51

n S )
r 51

Rl

d„slr~X!…D dX, ~23!

with d the Diracd function andz5Pl51
n uZO lu. The factorz1/2

arises because the integral of the Boltzmann factor over
unconstrained momenta is no longer independent of the c
figuration, as it was in the unconstrained system. Note
the objective of the constraints is to enhance the samplin
the phase space of an unconstrained system, so normally
would include Fixman’s metric tensor correctionz21/2 to the
constrained run to correct for this artifact introduced with t
constraints@7,9,17#.

If we omit the wall terms for the time being, the pressu
expression obtained by differentiation of the constrain
configuration integral reads
4-5
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pa
c 5

kBT

V

1

Zc~0!

]Zc

]«a
U

«50

5
kBT

V
^“X•V̄a&c2

1

V
^V̄a

•“XU&c

1
kBT

V (
l51

n K uZO lu21/2(
i 51

Nl

v̄l i
a
•“l i uZO lu1/2L

c

, ~24!

where the last term arises from differentiatingz. The vector
field V̄a must conserve all constraints,slr(X1«aV̄a)
5slr(X)50. Given a fieldVa, we can constructV̄a by
using these conditions in combination with the assumpt
that both fields displace the molecular centers of mass b
equal amount,( i 51

Nl ml ivl i
a 5( i 51

Nl ml i v̄l i
a , since the con-

straint forces are internal forces. We thus obtain

v̄l i
a 5vl i

a 2 (
r ,s51

Rl

ml i
21~“l islr !~ZO l

21!rs(
j 51

Nl

vl j
a
•“l jsls .

~25!

Combining Eqs.~24! and ~25! with the atomic vector field
yields a voluminous expression. The configurational av
ages can be rewritten as phase space averages of the
strained system, using the relations provided in Eqs.~20!
through~22!, to arrive at@11,15#

pa
c 5

1

V K (
l51

n

(
i 51

Nl

ml i ẋl i•bOaẋl i L
c

2
1

V K (
l51

n

(
i 51

Nl

xl i•bOa~“l iU2fl i
c !L

c

. ~26!

Note how the first term has lost its previous simplicity, a
how the constraint force has appeared in the second t
For a molecular field obviouslyV̄a5Va and the last term of
Eq. ~24! equals zero; the geometric approach ensures tha
resulting pressure is identical to that of Eq.~26!.

Note, however, that the pressurepa
c is not necessarily

equal to the pressurepa of the unconstrained system, b
cause the two pressures are based on different phase
distributions. One may derive the unconstrained press
from a constrained simulation, assuming the actual poten
of the constrained coordinates is sufficiently hard so they
righteously assumed constant, by invoking Fixman’s corr
tion @7,9#. In Eq. ~24! one would have to remove the la
term on the right-hand side, and replace both remaining
erageŝ f &c by ^ f z21/2&c /^z21/2&c . The last term of Eq.~24!
should also be subtracted from Eq.~26! and the three aver
ages need to be replaced in the same manner. An easier
of achieving these corrections is to simply run the co
strained simulation with the modified potentialF
1 1

2 kBT ln z, or by introducing artificial momenta to the sam
effect @18#, in combination with Eq.~26!.

Lue and Evans@19# recently applied a field with the struc
ture vl i5vl0 in their definition of the configurational tem
perature for a system with constraints. Considering the ab
discussion, it would perhaps be more appropriate to call
the molecular configurational temperature, as none of
internal degrees of freedom contributes to this tempera
calculation. An extension of their model to include the o
entational degrees of freedom in the temperature calcula
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is readily constructed. The construction of an appropri
constrained vector field, along the above lines, is under
vestigation.

IV. ELASTIC CONSTANTS

In the preceding two sections we have seen how the p
sure in a boxhO is expressed as a canonical average ove
microscopic pressure functionsa(X,hO ), for which there are
several alternatives. This result can be applied to any b
For one that is only slightly different from the reference bo
we may write in the above notation

pa~«!5
1

Z~«!
E

eO~«!hO
sa„X,eO~«!hO … exp$2bF„X,eO~«!hO …%dX.

~27!

The matrix of elastic constantsGI of a system measures th
response of the pressure to the deformation~or strain! of the
box,

Gab52
]pa

]«b
U

«50

52

]

]«b
*eO~«!hOsa exp~2bF!dXU

«50

Z~0!

1
*hOsa exp~2bF!dX

Z~0!

]Z/]«bu«50

Z~0!
. ~28!

In the last term, the first fraction obviously equals the pr
surepa , while the second fraction relates to the pressurepb
through Eq.~2!. The numerator of the first term, being itse
the derivative of an integral, can be further rewritten usi
the geometric approach. A derivation analogous to the s
leading from Eq.~2! to Eq. ~8! then yields

Gab52 K saS“X•Vb2bVb
•“XF2b

]F

]hO
:~bObhO !TD L

hO

2 K Vb
•“Xsa1

]sa

]hO
:~bObhO !TL

hO

1
V

kBT
papb . ~29!

The terms in the first average originate from the first order
the Taylor expansions of the Jacobian and the poten
while the terms in the second average result from the Ta
expansion of the microscopic pressure function. In the fi
average, the term between round brackets is proportiona
the microscopic pressuresb , whose average already appea
in the last term of Eq.~29!. Hence, they combine to form
cross correlation of the microscopic pressure fluctuatio
dsb5sb2pb . For a large system, where the boundary co
tribution W to the pressure may conveniently be ignore
introducing the microscopic pressure of Eq.~8! gives
4-6
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Gab52
V

kBT
^dsadsb&

2
1

V
^Vb

•“X~kBT“X•Va2Va
•“XU !&

1
pa

V

]V

]hO
:~bObhO !T. ~30!

The last term, arising from the differentiation of the explic
volume factor insa , is readily shown to simplify topaDb .
In a periodic system with nearest image convention, see
~14!, the divergence of the vector field is constant, and

Gab52
V

kBT
^dsadsb&

1
1

V K (
k, l

]

]r kl
S (

i , j

]U9

]r i j
•bOar i j D •bObr klL 1paDb ,

~31!

in agreement with the conventional elasticity express
@11,20#.

Instead of analytically evaluating all second derivatives
the hypervirial@11# or Born term@20# of Eq. ~31!, it is often
easier to perform these differentiations numerically. This c
be achieved by tackling the Born term directly. But if the fir
derivatives of the potential are known, i.e., if the pressure
readily available, it is advantageous to write the first line
Eq. ~28! in a finite difference or perturbation form,

Gab52 lim
«b→0

pa~«bĥb!2pa~0!

«b

52 lim
«b→0

1

«b
F ^sa8~«bĥb!exp@2bDF~«bĥb!#J&hO

^exp@2bDF~«bĥb!#J&hO

2pa~0!G . ~32!

The fraction between square brackets exactly equals
~27!, rewritten as the ratio of two canonical averages o
configurationsX within the hO box. In the denominator we
have used Eq.~5!, J is the Jacobian, and the quanti
DF(«bĥb)5F(X8,hO 8)2F(X,hO ) measures by how muc
the energy of a configuration changes during the defor
tion. The numerator is derived in a similar fashion, w
sa8 («bĥb)5sa(X8,hO 8). For linear vector fields, like that o
Eq. ~9!, the Jacobian is the same constant in both avera
and therefore cancels out. Evidently, Eqs.~30! and ~31! are
obtained by Taylor expanding Eq.~32!.

The interesting point is that there are several differ
ways of calculating the elasticities, besides the usual ato
approach. One could, for instance, take a molecular appro
by twice inserting the field of Eq.~16! into Eq.~31!, which is
equivalent to calculating the effect of a rigid-body center
mass rescaling on the molecular pressure in Eq.~32!. A com-
bination of one atomic and one molecular deformation is a
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possible. The main argument for using the molecular field
that it drastically reduces the statistical noise in the press
@12#, though it does not necessarily guarantee a more rap
converging calculation.

V. CONCLUSIONS

A geometric approach towards calculating derivatives
partition functions has been used here to derive a gen
expression for the pressure tensor. The appealing featur
the method is that it has an inherent element of freedo
allowing one to generate, within certain limits, a variety
explicit equations from the general expression. We ha
shown how a number of conventional pressure expressi
for periodic and nonperiodic simulation boxes, all stem fro
the same equation. The ability to recover both the atomic
molecular pressure proves the equivalence of the two i
straightforward, but unconventional, manner. Applying t
geometric approach to the derivative of the pressure yield
general expression for the elastic constants, with the s
inherent freedom.
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APPENDIX A: MICROCANONICAL PRESSURE

The calculation of the pressure in a microcanonical
semble has the added complication of the total energy of
system being conserved during the box deformation. The
sponse of the relevant thermodynamic potential, i.e., the
tropy, to small perturbations readsT dS5dE1Vp•d«
2m dN, with E the total energy. The entropy is related to
partition function byS5kB ln V, with

V~«,E!5E E
eO~«!hO

d$F„X8,eO~«!hO …1K~P8!2E%dX8dP8.

~A1!

Here theP8 are the momenta conjugate to the Cartesian
ordinates, andK is the kinetic energy. Analogous to Eq.~2!,
the pressure reads

pa5
T

V S ]S

]«a
D

E
U

«50

5
kBT

V
lim

«a→0

V~«aĥa,E!2V~0,E!

«a
.

~A2!

Since the box deformation and coordinate displacementX
→X85X1«aVxa(X) inevitably will change the potentia
energy of the system, the momenta have to change to k
the total energy of the system constant:P→P85P
1«aVpa(X,P) ~The particular case ofK being too low to
4-7
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compensate for a rise inF is too improbable to be of any
effect @2#!. Introducing the combined vector field into E
~A1! gives

V~«,E!5E E
hO

d$F~X1«aVxa,hO1«abOahO !

1K~P1«aVpa!2E%U]X8

]X UU]P8

]PUdX dP.

~A3!

Here the momentum vector field must be chosen such
the argument of thed function is, to first order in«a , iden-
tical before and after the deformation, hence

(
i 51

N

vi
xa
•“ iF1

]F

]hO
:~bOahO !T1(

i 51

N

vi
pa
•

pi

mi
50. ~A4!

Because the argument of thed function is constant, this func
tion needs not be Taylor expanded. It is then straightforw
to show, see Eq.~6!, that

pa5
kBT

V
^“X•Vxa1“P•Vpa&E , ~A5!

where the average is over states of equal energy.
An obvious, but in no way unique, choice for the mome

tum vector field is a uniform scaling,Vpa5gP. From Eq.
~A4! follows

g52
1

2K FVxa
•“XF1

]F

]hO
:~bOahO !TG , ~A6!

and substitution of this field in Eq.~A5! gives

pa5
kBT

V
^“X•Vxa&E2

kBT

V
~3N22!K 1

2K FVxa
•“XF

1
]F

]hO
:~bOahO !TG L

E

, ~A7!

where we have used“P•P53N and where the22 arises
from the kinetic energy term contained ing. Note that the
temperature in the microcanonical ensemble is not define
the usual way, but by@2#

1

T
5kB

3N22

2 K 1

K L
E

. ~A8!

This pressure expression, in combination with the vec
field of Eq. ~9!, is in agreement with the literature@21#.

APPENDIX B: LONG MOLECULES

The derivation of Sec. III is slightly more involved fo
long molecules, e.g., polymer chains, which are longer t
half the periodic box dimensions. Recall that the last t
terms in Eq.~8! describe the energy change of the syst
under a simultaneous change of the box,hO→eOhO , and the
01670
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coordinates. The vector field was introduced merely to fac
tate the calculation of the latter contribution, whenever
two terms can be treated independently. For long molecu
this is no longer the case.

Consider the nearest image vector between two atom
the box,

rl i ,m j5xl i2xm j2hOn@hO 21~xl i2xm j !#. ~B1!

The atom with coordinatesxl i ~by definition in the central
box! belongs to one particular unfolded copy of thelth mol-
ecule, denoted byl( i ), whose centerx̃l( i )0 need not neces
sarily lie within the box. The combined box and coordina
deformations, treating the molecules as rigid bodies, cha
this nearest image vector into

rl i ,m j8 5xl i2xm j1~eO21O !~ x̃l~ i !02 x̃m~ j !0!2~eOhO !

3n@~eOhO !21$xl i2xm j1~eO21O !~ x̃l~ i !02 x̃m~ j !0!%#.

~B2!

If the range of the potential is short relative to the box
mensions, thenn has the same value in both the above e
pressions. A further reshuffle of terms gives

~B3!

The vectorzl i ,m j connects the centers of the unfolded mo
eculesl andm whereby, for a given copy ofl, the matching
copy of m is selected by the condition that it minimizes th
distance between their respectivei th and j th atom. Put dif-
ferently, it describes the itinerary of going from the center
the unfolded moleculem to its j th atom, leaping from there
to the nearest copy of thel i atom, and continuing from there
to the center of this unfolded copy of thel molecule. With
the displacements of Eq.~B3! one easily constructs a pres
sure expression of the form of Eq.~14!, yielding

pa5
nkBT

V
Da2

1

V K (
l,m

n

(
i 51

Nl

(
j 51

Nm ]U9

]rl i ,m j
•bOazl i ,m j L

2
1

V K (
l51

n

(
i , j

Nl ]U9

]rl i ,l j
•bOazl i ,l j L . ~B4!

This is the correct expression for the pressure in a perio
system of long molecules, as first derived by Theodo
et al. @12#. The intramolecular term arises, despite the rig
body translation and despite the intramolecular forces s
ming up to zero, because the changing periodic bound
conditions effectively alter the distances, and hence the
teraction energies, between atoms of thelth molecule and
the atoms of the periodic images of thelth molecule. For
small molecules, where the nearest image vector can be
pressed as
4-8
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rl i ,m j5~xl i2 x̃l~ i !0!2~xm j2 x̃m~ j !0!1~ x̃l~ i !02 x̃m~ j !0!

2hOn@hO 21~ x̃l~ i !02 x̃m~ j !0!# ~B5!

for all i and j, we find thatzl i ,m j5rl0,m0 and the pressure o
Eq. ~18! is recovered. Note that if the interaction betwe
m

m.

-

01670
two atoms contributes to theU potential, i.e.,rl i ,m j5xl i

2xm j , the vector fieldzl i ,m j5(eO21O)( x̃l( i )02 x̃m( j )0) need
not be identical to (eO21O)(xl( i )02xm( j )0), hence Eq.~17!
with its current atom-based definition ofU andW holds for
nonperiodic systems only.
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