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Geometric approach to the pressure tensor and the elastic constants
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Expressions are obtained for the pressure tensor in the canonical and the microcanonical ensemble for both
isolated and periodic systems, using the same geometric approach to thermodynamic derivatives as has been
used previously to define the configurational temperature. The inherent freedom of the method leads to a
straightforward proof of the equivalence of atomic and molecular pressures, for short molecules and for
molecules exceeding the dimensions of a periodic simulation box. The effect of holonomic constraints on the
pressure is discussed. Expressions for the elastic constants are derived in the same manner.
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[. INTRODUCTION transition-state theory rate. The conventional thermodynamic
integration method7] and the potential of mean constraint
A number of recent papers have discussed an intuitivéorce method8,9] are but two appearances of the one un-
geometric approach to the partial derivatives of thermodyderlying geometric approach, obtained by introducing differ-
namic potentials, as appearing in statistical mechanics ar@nt vector fieldg6].
atomic simulationg1—6]. Any partition function, i.e., the In Sec. Il of this paper, we derive an expression for the
phase space integral underlying a thermodynamic potentiaPressure by applying the geometric approach to the volume
can be expressed as an integral over a surface defined by teerivative of the free energy in the canonical ensemble. The
characteristic variables of that potential. The basic idea, nowg0mmon atomic pressure expressions are then arrived at by
is that the derivative of a surface integral, with respect to dnserting a particular choice of the vector field. In Sec. lll a
parameter defining that surface, can itself be expressed as gifferent field leads to the common molecular pressure ex-
integral over the very same surface. By expressing the digPression, thus giving a direct proof of the thermodynamic
placements of the surface elements under an infinitesim&quivalence of the two pressures. Alternative perspectives on
parameter change as a vector field, the change of the intée pressure expressions are discussed. Expressions for the
grand during the displacement is readily calculated, to firsglastic constants, in atomic, molecular, and mixed form, are
order, as the dot product of the vector field and the gradienderived in Sec. IV.
of the integrand. The accompanying change of the area of the
;urface element aIsp follows from thg vector field, again to Il. ATOMIC PRESSURE
first order. Integrating both contributions over the surface
area yields the desired result, in this case the derivative of a The free energyA of a closed system is a function of the
partition function. temperaturel, the number of atomBl, and of the matrix of
Although the vector field must correspond to a bijectiveedge vectorsh=(h,,h,,h3) specifying the location of the
projection, there still is ample freedom in its construction.enclosing walls. It proves advantageous to position the origin
Consider, for example, the energy derivative of the entropyf the coordinate system at the center of the box. For infi-
in a microcanonical ensemble, i.e., the inverse temperaturaitely hard walls, the restriction that the coordinatesf the
The energy of a system of interacting atoms can be increasdéth atom must lie within the box then redth™'x),|<3,
by adding to every atomic momentum a vector proportionalith A\ €{1,2,3}. But for soft walls this condition is less
to that momentum. With this vector field the usual relationstrict: although atoms are mostly within the box, there is a
between the temperature and the overall kinetic energy ifinite chance for an atom to penetrate deeply into the wall.
recovered[2,5]. Alternatively, one could simultaneously This is tacitly implied whenever we write that the particle is
move all atoms along the gradient of the potential, i.e.,in the box h.” The free energy of a periodic system, as
against the forces. With this vector field one arrives at thecommonly used in computer simulations, is also a function
recently introduced configurational temperatite 5], which  of N, T, andh, whereh denotes the matrix of edge vectors of
distills a temperature from the configurations sampled in @he repeated cell. We shall follow the convention that the
molecular dynamics or Monte Carlo simulation. As a seconcatoms are at all times within the central bbx the space
example, in reaction rate calculations the geometric approacbutside the box is filled with periodic images of the atoms
can be used to calculate the free energy profile along a reagiside the box. The discussion of periodic systems will be
tion coordinate, and hence the equilibrium constant and thémited to short-ranged potentials, with a cutoff of less than
half the smallest box size. In addition, we assume that there
are no external body forces working on the system.
*Email address: w.k.denotter@tn.utwente.nl Regarding our notation, we will use bold lower case Latin
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letters for three-dimensional vectors. The corresponding Upg,e configuration space in the befe Aa)h, and vice versa.
per case is short-hand for a complete set of atomic vectorg, ihe limit of ,—0, such a p_rojgctioﬁ is achieved by a
e.g., V¥={v7,...,vy} with the superscriptx acting as the configuration-dependent vector fiel [1—6],

ordinal. Bold Greek letters are reserved for six-dimensional

vectors, and underscores are added to distinguish between X'=X+¢g V4X). (4)
vectors and matrices.

Under the above conditions, the potential energy of thelhis field allows us to express the partition function of the
system of interacting atoms is a function of the atomic coordeformed ensemble as an integral over the reference en-
dinates and of the box dimensiorB(X,h). This potential ~Semble,
can always be split into a part that explicitly depends on the
box dimensions and a part that does ndt=U(X) Z(scﬁ?a)zj exp{— BP[X' &g, ) h]tdX’
+W(X,h). For a nonperiodic systend describes all inter- eq )y
atomic interactions an@V captures the interactions between
atoms and the walls. In a periodic systeW,includes all :J exp{ — BP[X+&,V(X),h+e,bh]}
interactions between atoms and periodic images of atoms, g0)h
i.e., those atom pairs for whick; =x; —X; is larger than the
cutoff distance but which do interact after applying the near- X
est image convention. This convention obviously makes
these Interaction energ!es.exphmtly dependgnt on t.he bo)1“aylor expanding the Jacobian of the coordinate transforma-
dimensions. The potentid) includes all direct interactions, tion of Eq. (4) gives
i.e., those atom pairs for whick;; is less than the cutoff

ax'

X dXx. (5)

distance. ax/y i N2l
For small perturbations of the bolx;—h’ = ¢eh, we define (W) =11 G 5w+8ay) =1+sa2 .
a deformation matribe and a deformation vectar by s 1# I=E AL O
+0(&2), (6)

€1 3&4 385
N N N where 6 is the Kronecker delta. Both lowest order terms
oe)=1+| 364 22 &g | =1+ e,b% (1 originate from the multiplication of the diagonal elements of
the Jacobi matrix. Next, Taylor expanding the exponential in
Eq. (5), which contains: , twice, yields

where theb®’s represent the six independent deformations of
the box. Rotations of the box are excluded here, as are trans- Z(aa;]a)zf exgd —BP(X,h)]
lations, since they do not affect the potential energy nor the b

1 1
285 286 €3

free energy of the system. The factgrsare introduced to N JD(X,h)
adhere to conventions of the literature. The response of the x| 1-Be, > > v&—")
system’s free energy to small perturbations is givendidy i=1x=1 IXix

=—-SdT-Va-de+ udN, whereSis the entropyV=|h|

3 3
the volume,sr the pressure vector, ang the chemical po- x| 1-pge, S dP(X,h) 5 67exvhm)
tential. At constanN andT, the « component of the pressure WL ohy, & de,
then reads e

Ui 2
a n N .
_ LA kel HedDTHO Troady &, T, X TOE O
e v &Sa EZO_V Z(O)s —0 Eq '

Multiplying the three terms in large parentheses, one readily
~ . . o sees that the zeroth order term recovg(g), and that the
wheren® is a unit vector in therth dlrgctlon. Inthe last step ¢t order term produces the derivative dfeeded in Eq.

we usedA=—kgTIn(2)+c, wherekg is Boltzmann's con- (2). Note how the geometric approach allows us to convert
stant andc is an irrelevant function of the temperature. The e gerivative of an integral into the integral of a derivative,
configuration integral reads under conditions in which the two operations do not com-
mute. Combining the above steps, and reverting to a more

Z(S):J exp{— BP[X,e(e)h]}dX, (3) compact notation, we arrive at our central pressure expres-
&&)h -7 sion,

where the integrals run over the entire kiéor soft walls this kgT 1 1/0d T
could also have beeR®, see the comment at the start of this ~ Ta ="y, (Vx- V) = (V- Vx®@) — v<%3(b“b) > :
section, and 8= 1/kgT. h )
In the evaluation of Eq(2) it proves advantageous to
introduce a projection that coupleserypoint X of the con-  Here angular brackets denote a canonical average over the
figuration space in the bog(0)h with a uniquepoint X" of  reference boxh, the colon indicates a double contraction,
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and the superscriph stands for transposed. The first term onwhich are about half the box dimensi@ioecauseN,+0 we
the right-hand side measures the change of the accessilialy need to consider atoms near a walhd are also of
volume of configuration space during the box deformation. ltopposite sign for opposite faces of the box, we conclude that
is the only term that would remain for an ideal gas. TheEﬁiiVinieiﬁ:Ei,aViW- b*xA, is of the order of the
second and third term describe the change of the potentiglolume of the box. This is easily verified by considering a
energy accompanying the deformation of the box and itsectangular box with a wall potential depending on the per-
contents. In Appendix A we derive the equivalent expressiorpendicular distance between the atom and the wall. In this
for the microcanonical ensemble. particular system, the terms with=<3 are proportional to

At this point we want to stress that one is free to choosghe volume of the box and to the strength and range of the
any convenien¥/“, subject only to the condition that thte  wall potential, while the terms withw=4 are identically
—h' projection must be a bijection. This one-to-one map-zero. The firstW term in Eq.(10) therefore makes a®(1)
ping is essential when writing the integral over the deformectontribution to the pressure. The seconwdaverage is the
ensemble as an integral over the reference ensemble. It eproduct of 3W/oh, which by the definition ofwW is propor-
sures that by integrating over tteatire reference ensemble tional to the surface area, and a box dimension. Again, this
we sample theentire deformed ensemble in a consistent yields anO(1) contribution to the pressure, as will also be
manner, without omissions, without double counting, andargued on different grounds at the end of this section. The
with traceable corrections for the dilations and contractionsnergy changes by moving the atoms towards the (ttadi
incurred during the projection. It therefore guarantees thafirst W average and by moving the walls away from the
the derivative of the integral, in this case the pressure, beatoms(the secondV average are roughly equal but of op-
comes independent of the chosen projection method. Somgvsite sign, and therefore largely cancel each other. The re-
care is needed in simulations, however, as the convergenggainder, after division by, is less tharO(1), and may be
rate of the averages in E¢B8) may strongly depend on the omitted from the pressure expression. This is also borne out
chosen field. by the observation thad is a surface term, so its averaged

An obvious choice for the vector field is to distort the tpta| derivative{ dW/ de ,) [the sum of the twV averages in
conformation inside the box in the same way as the boXq. (10)] is also proportional to the surface area, and there-
itself. This choice is commonly made when deriving the hy-fore contributes a ternO(V~"3) to the pressure. Conse-
drostatic pressurep=333_,m,, from the free energy quently, leaving out just the last term, retaining a pressure
change under a uniform scaling of the bd0]. For the six  expression of the formi3]
box deformations considered here, the vector fields are then

of the form
5 kel | 1< > V.d-b > (11)
a’\a X — X To= a T O 4 i '_aX'
Via: lim E(S n ) i |:Daxi. (9) \V; \V; | i i

£,—0 a

Inserting this field into Eq(8), and using the aforementioned is unfortunately not permitted. As the Nesadersen
partitioning of the potential energy, gives barostat of Ref[14] is derived from the energy change under
a uniform scaling of the box, its equation of motion for the
NkgT 1 1 i
_Nks Aa—v<2 ViU'baXi> _v<2 ViW'D“Xi> volume momentum should therefore also contairrather
I 1

Ta™"y than 7r.

The interatomic interactions in simulations are more usu-
B —<—'(b"h)T> 0 ally expressed in terms of the relative positions of all atom
V\oh == [ pairs, R. By rewriting U in terms of direct difference vec-
tors, M={x;}, the potential becomes®=U’(R)
whereA ,=Tr(b*) equals one fow=3 and zero otherwise. +W(X,h). The boundary term still requires absolute coor-
The first two terms on the right-hand side reproduce the sixlinates. The energy change under a perturbatign- (x;
unique elements of the regular pressure malfit]. We — +¢ vi)—(x;+&,v") with a field of the form of Eq(9) is
show below that the sum of the last two terms is vanishinglythen straightforward, and E¢8) gives
small in the thermodynamic limit of increasing andV to
infinity at constantN/V. Although it is stated in the literature
that the pressure of a periodic system can only be expressed _ NKkgT 1 <2 Ju’ >

in terms of a double summationjde infra Eq. (10) is a ™
point to the contrary11,12.

We can split the total boundary force on the atoms of the 1
system into six parts, one for each side of the baf, __<
=3,V;WéP, where6” equals unity if the th atom interacts
with the pth face and zero otherwise. On averagé is
proportional to the area of théth wall, directed perpendicu- which recovers the usual pressure expression in the thermo-
lar to that wall, and of opposite sign to its counterpart of thedynamic limit[11]. This result also follows directly from Eg.
opposing wall. After multiplication by the coordinates, (10) for a pairwise additive potential,

> viw~paxi>—$<%v-<b“nf>, (12
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formation small compared to the width of the wall potential.
The configurations in théa and eh boxes of Eq.(2) then
sample exactly the same set of configuratioXs R3V, see
the comment at the start of this sectipbe it with slightly
different Boltzmann factors because of the shifted wall po-
tential. Under these conditions a simple vector figlt=0

o thi : : already suffices to calculate the pressure. Equati8hand
where Newton's third law is used in the last s{d]. (10) are then reduced to just their last term, recovering the

Although the above expression also holds for periodic

systems, it is not elegant to split the potential energy of a'lmwal result that the pressure is the force exerted on the

periodic system into an internél and a boundary part, as walls per unit area. This kind of argument cannot be applied

both terms are of the same origin. The entire potential energ systems with infinitely hard walls, nor to perioqlic systems,
of such a system is more conveniently expressed by a sing X tfhere thdﬂ andeh boxes do not sample identical sets of
function, ®=U"(R) and R={r;;}, through the use of the configurations.
nearest image convention; = X;; —bn(h‘lxij). Heren re-
turns a vector of the three nearest integers to its three argu-
ments(thus making the condition of placing all atoms inside g far, we have shown how the geometric approach re-
the central box superfluousin line with Eq. (9), the inter-  ¢4yers the conventional atomic pressure expressions. The in-
atomic vectors are perturbed intg—rj;+e,b°;, which  teresting feature of the approach is that we are not limited to
combines with Eq(8) to give[11] this single field of Eq.(9). For molecular systems, for in-
Y stance, it proves advantageous to introduce a field in which
- ZNKBTA _ 1 E ﬂ,bar__ _ (14) entire molecules are moved as rigid bodies. In a two-index
S A VA W = B TR notation, with the Greek index referring to a molecule and
the Latin index referring to either an atom€1<N,) of
Again, this result is derivable from E@10). For theU part  this molecule or to the entire molecule<{0), the proposed
of the pressure the derivation is as stated above, where autfield reads
matically rj;=x;; because of the definition df. Applying
the same steps to the third term on the right-hand side of Eq. V3 =Vyo=b"%0- (16)
(10) gives— (= ;dW/drj; - bX;;), with all x;; exceeding the _ _ _ _ -
cutoff distance by definition. Only when the last term of Eq. The coordinate of the molecule is conveniently identified
(10) is added, which expressed as a sum of atomic interagvith the center of mass of the moleculex,g

Ill. MOLECULAR PRESSURE

tions gives =m;012?':*1mm7<m with massesm,;. In a periodic system
the coordinates ought to be “unfolded” to restore any bonds
W b T=S) IW[x;; —hn(h™ ;)] bt T that were broken by placing the individual atoms in the cen-
dh (b= i< dh (0% tral box. The unfolded atoms may lie outside the box and are

therefore marked by a tilde; the resulting center of n¥ggs

IW(rij) ahn(h™'x;)) is then replaced by its periodic copy, within the box. But,

_ . ap\T
B iz ar; oh (%) one could equally well opt for, say, the coordinate of the first
atom of the molecule, o= x, 1. As will be shown in Appen-
IW i i ield i impli
_ _2 b“hn(h_lxij), (15 dix B, expressing the vector field in the above form implies

=) drij that a molecule may interact with at most one copy of every
other molecule. This condition is obviously met in nonperi-
are the absolute; converted into the nearest image vectorsodic systems. In periodic systems, it requires the molecules
ri; needed to complete the proof. The manipulations of bott{o be small with respect to the box dimensions. Long mol-
W terms are based upon the assumption that the nearest iicules in periodic boxes are discussed in Appendix B, along
teger periodicity correctionn(h‘lxij) is unaffected by the with a more extensive o_hscussmn of the above issues.
box and coordinate changes, as is the case if the range of the In order for a vector field to be acceptable for the geomet-
potential is sufficiently small with respect to the box dimen-Ti¢ approach, it must correspond to a bijective projection
sions. In the last step of Eq15) we useddhg,/dh,, from theh box to theeh box. This is readily shown to be the
= 84,8, . Some author§l3,14 derived Eq.(14) from Eq. ~ C@se in a periodic system and in a box surrounded by soft
(11) by employing Newton’s third law and simply interpret- Walls. But, strictly speaking, this is not the case in a box with
ing every occurrence of an; as anr;;, thus in the process !nfmltely 'hard_ walls—if a_cublc box with S|dd§;|s elongated
inadvertently addingV*12i<ja<I>/o7rij -b%(x;—ryj) to the N thex direction, there will be no molecules in the glongated
pressure. Using the above results, it is straightforward t$0X that touch the walls ax==(1+g,)h/2 with just a
show that this extra term exactly retrieves W\&/oh term  Single atom—though the error is negligible in the thermody-
that was left out in going from Eq10) to Eq.(11), as was to namic limit. Wg may now_mtroduce the field of E_@.B) into
be expected. Eq. (8). Substitution of either of the above choices qg
Another well-known pressure expression is recoverednto the divergence term giVﬁNﬁ Vai-vii=A, for each of
when we consider a system with soft walls under a box dethe n molecules. With the centers of the molecules located
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inside the box, one trivially arrives at the well-known ex-  These ideas are now generalized to systems with multiple

pression fomonperiodicsystemq 15] internal constrained coordinatesg,;(X)=0 with r
e{1,... R\}, per molecule. In a molecular dynamics simu-
n N, ; - . ) .
nkgT 1 . lation these constraints are imposed by adding constraint
To= T\ 2 2 V)\IU b X\o0 c _ <R\ ) P
\% forces of the formfy; =3 ™ \,,V,;o,, to the existing po-

NN, tential forces. The Lagrange multipliexs, are conveniently
1 3 2 V. W-bx l ﬂv'(b“h)T obtained numerically by demanding that the constraints are
Y N 1O = ’ obeyed after every time step, as in #1eAKE algorithm[16].
Analytically, solving the Cartesian equations of motion and
17 equating the first and second time derivatives of the con-

where theW terms again vanishes in the thermodynamicStrained coordinates to zero, yields the multipligfs
limit. Expressing the potential energy in terms of the relative

positions, as in Eq(14), directly yields the familiar molecu- Ry Ny
lar pressure expression for the periodic sysfém12] )\“2521 (le)rs( ;1 M Vyions V@

nkBT "
PLLIIWR D>

N<p =1 (=1 9Ny

A=1li=1

Ny N

A 2 &UH
3 ¥ b) N | )

18 —“221 Xnit VaiVajonsXaj

(20

The summation ovdrandj yields the total force between the
molecules\ and u. All intramolecular contributions have
vanished here because the rigid body translation leaves t
internal coordinates and internal energy untoucttleid does
not hold true for long molecules in a periodic box, see Ap- Ny
pendix B. Note how both the atomic and molecular pressure (ZV)rs=> MV, i00, - Vyiohs. (21)
expressions, Eq$10) and (14) vs Egs.(17) and (18), have i=1
been derived from the central expression of E). by se-
lecting two convenient vector fields, which implies that bothgg .55 of the constraints, the Cartesian velocities are cor-
definitions are thermodynamically equivalent. Altemat'verelated by(6,15]
ways of proving this result have appeared in Rgf?] a '
[15].

An advantage of the molecular pressure over the atomic
pressure is that it is far less noisy, because the strong andXy.i p.]>c 5kaT
high frequency intramolecular contributions are omifte#].
A second advantage is that the intramolecular constraints, (22)
which are often introduced in simulations to increase the
time step[7,11,15, do not contribute either. In the atomic where(---). denotes the average over the constrained en-
pressure calculation, it is common practice to include thesemble. The sampled configuration integral reads
constraint forces in Eq14) in the same way as the potential
forces. In the geometric approach, however, the way to treat

with overhead dots indicating a time derivative, and with the
HR\ X R\ matrices

T
V)\io')\rv}\jo-)\s

9 -
Jl E (Z )\l)rs—v

MM,y j

constraints is.to con_struc.t a vector field tha; cqrr_esponds toa Z (&)= f expl— B (X, & 8)h)}21/2

box deformation whilst simultaneously maintaining all con- e(s)h

straints[6]. Consider, for example, a system of rigid dumb n Ry

beIIsA. vai’izl_)“r_m is the unconstrained atomic vector field X H IT 8oy, (X)) |dX (23)

andf, is the unit vector parallel to theth molecule, then a A=1\r=1

valid constrained field reads
Vi =i T 3R (Vi —vip) - P, with §the Diracé function andz=TI} _,|Z,|. The factorz'?

arises because the integral of the Boltzmann factor over the

V=V — 3P\ [(Vi— Vi) - Tr ] (190  unconstrained momenta is no longer independent of the con-

figuration, as it was in the unconstrained system. Note that
The added terms ensure that this vector field is perpendiculahe objective of the constraints is to enhance the sampling of
to the gradient of the constrained bond length. The dumb bethe phase space of an unconstrained system, so normally one
is thus translated as a rigid body, and at the same time rotategould include Fixman’s metric tensor correctish'? to the

to align with the applied box deformation. Substitution of constrained run to correct for this artifact introduced with the
this field in Eq.(8) leads to a pressure expression devoid ofconstraintg7,9,17.

the constraint forcegeven if we were to explicitly introduce  |f we omit the wall terms for the time being, the pressure
them in the normal fashion, they would be orthogonal/to  expression obtained by differentiation of the constrained
and drop out configuration integral reads
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. keT 1 9z, kgT _ 1 is readily constructed. The construction of an appropriate
To=~ 5| = (Vx' V= 5(V¥VxU).  constrained vector field, along the above lines, is under in-
V Z(0) de,| _, V \Y I
e=0 vestigation.
kgT < N
L) <|zx|-1’22 VeValz®) L (29
A=1 i=1 c IV. ELASTIC CONSTANTS
where the last term arises from differentiatingThe vector In the preceding two sections we have seen how the pres-

field V¢ must conserve all constraintarM(XJrsaV“) sure in a boxh is expressed as a canonical average over a
=,,(X)=0. Given a fieldV®, we can construcky/® by microscopic pressure functian,(X,h), for which there are

using these conditions in combination with the assumptior€veral alternatives. This result can be applied to any box.
that both fields displace the molecular centers of mass by ahor one that is only slightly different from the reference box,

equal amou“taEi’\‘lemei:EiNilmxini . since the con- We may write in the above notation
straint forces are internal forces. We thus obtain
Ry N\ 1
Wizvfi_rél m{il(in%)(Zil)rs;l Viyj ’ ijo'xs- Tol€)= % L(sma'a(x,g(s)h) eXp{—,B(I)(X,Q(s)h)}dX.
' (25) (27)

Combining Egs.(24) and (25) with the atomic vector field

yields a voluminous expression. The configurational averThe matrix of elastic constanis of a system measures the
ages can be rewritten as phase space averages of the coasponse of the pressure to the deformatmmstrain of the
strained system, using the relations provided in E@§) box,

through(22), to arrive at{11,15

1/ M
WZZV< 2 2 m)\ix)\i’bak)\i>
C

Jd
Efg(s)h(fa eXF(—,B(I))dX

A=1i=1 0T, B =0
1 z”: % c P depl.y Z(0)

- = Xy b(V,;U—f}. . 26
ViEie ™ (Vi N . 29 Jhooexp(— BP)dX 9Z/de gl oo

(28)
Note how the first term has lost its previous simplicity, and 2(0) 2(0)

how the constraint force has appeared in the second term.

For a molecular field obviously “=V* and the last term of | the |ast term, the first fraction obviously equals the pres-

Eq. (24) equals zero; the geometric approach ensures that thg,re -, while the second fraction relates to the pressege

resulting pressure is identical to that Of_ EQo). ) through Eq.(2). The numerator of the first term, being itself
Note, however, that the pressure; is not necessarily e derivative of an integral, can be further rewritten using

equal to the pressure, of the unconstrained system, be- \he geometric approach. A derivation analogous to the steps
cause the two pressures are based on different phase Sp?&ﬁding from Eq.2) to Eq. (8) then yields

distributions. One may derive the unconstrained pressure

from a constrained simulation, assuming the actual potential

of the constrained coordinates is sufficiently hard so they are ob
righteously assumed constant, by invoking Fixman’s correc- Lap=— < O‘a( V- VE—pBVE. qu’—/ﬁ—i(bﬁb)T)>
tion [7,9]. In Eqg. (24) one would have to remove the last h

term on the right-hand side, and replace both remaining av-

erageg f). by (fz~ Y2 /(z"¥2),. The last term of Eq(24) _<VB' Voo, + I0q :(bﬁh)T> n %%Trﬁ_ (29)
h B

h

should also be subtracted from E@6) and the three aver- dh
ages need to be replaced in the same manner. An easier way
of achieving these corrections is to simply run the con-
strained simulation with the modified potentiadb  The terms in the first average originate from the first order of
+ kg T Inz, or by introducing artificial momenta to the same the Taylor expansions of the Jacobian and the potential,
effect[18], in combination with Eq(26). while the terms in the second average result from the Taylor
Lue and Evan$§19] recently applied a field with the struc- expansion of the microscopic pressure function. In the first
ture v,; =V, in their definition of the configurational tem- average, the term between round brackets is proportional to
perature for a system with constraints. Considering the aboviie microscopic pressuie;, whose average already appears
discussion, it would perhaps be more appropriate to call thign the last term of Eq(29). Hence, they combine to form a
the molecular configurational temperature, as none of theross correlation of the microscopic pressure fluctuations,
internal degrees of freedom contributes to this temperaturéo ;= 03— 7. For a large system, where the boundary con-
calculation. An extension of their model to include the ori- tribution W to the pressure may conveniently be ignored,
entational degrees of freedom in the temperature calculatiomtroducing the microscopic pressure of Ef) gives
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vV possible. The main argument for using the molecular field is
Uop=— ﬁ@ff ad0p) that it drastically reduces the statistical noise in the pressure
, though it does not necessarily guarantee a more rapidly
. [12], though it d il idl
1 converging calculation.
- v(V'B Vx(kBTVx'Va_Va’ VxU)>

V. CONCLUSIONS

T, OV

_a . T
ty ab-(bﬁh) : (30

A geometric approach towards calculating derivatives of
partition functions has been used here to derive a general
The last term, arising from the differentiation of the explicit expression for the pressure tensor. The appea"ng feature of
volume factor ino,, is readily shown to simplify tar,A;.  the method is that it has an inherent element of freedom,
In a periodic system with nearest image convention, see EGllowing one to generate, within certain limits, a variety of
(14), the divergence of the vector field is constant, and  explicit equations from the general expression. We have
shown how a number of conventional pressure expressions,
for periodic and nonperiodic simulation boxes, all stem from
the same equation. The ability to recover both the atomic and

molecular pressure proves the equivalence of the two in a

1 d . . .

+ _< _( _'bar__) 'D'Brkl> +m,Ag, straightforward, but unconventional, manner. Applying the

VA2 dr | 1< geometric approach to the derivative of the pressure yields a

(31) general expression for the elastic constants, with the same
inherent freedom.

in agreement with the conventional elasticity expression

\Y
Faﬂz - kB—T<50'a50'ﬁ>
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7ao(ep7’) — 7a(0)

Faﬁ: - Ilmo ep APPENDIX A: MICROCANONICAL PRESSURE
’ R . The calculation of the pressure in a microcanonical en-
— _ lim i (oalepi)exd — BAR(e47°)10)n semble has the added complication of the total energy of the
ep-0FB (exq—,BA(D(sﬁfyB)]J)h system being conserved during the box deformation. The re-
sponse of the relevant thermodynamic potential, i.e., the en-
tropy, to small perturbations read$ dS=dE+Va-de
—ma(0) . (32 — w dN, with E the total energy. The entropy is related to a

partition function byS=kg In Q, with
The fraction between square brackets exactly equals Eq.
(27), rewritten as the ratio of two canonical averages over Q(s,E)=J J S (X' &(e)h)+K(P')—E}dX'dP’.
configurationsX within the h box. In the denominator we -7
have used Eq(5), J is the Jacobian, and the quantity &e)h (A1)
AD(e7°)=D(X',h")—®(X,h) measures by how much
the energy of a configuration changes during the deformaHere theP’ are the momenta conjugate to the Cartesian co-
tion. The numerator is derived in a similar fashion, with ordinates, and is the kinetic energy. Analogous to E@),
ol(esm°)=0,(X',h"). For linear vector fields, like that of the pressure reads
Eqg. (9), the Jacobian is the same constant in both averages

and therefore cancels out. Evidently, E€30) and (31) are - :I(a_s) :kB_T lim Q(S“ﬁa’E)_Q(O’E)_
obtained by Taylor expanding E(B2). “ Vide,/ o 6,0 €4
The interesting point is that there are several different (A2)

ways of calculating the elasticities, besides the usual atomic

approach. One could, for instance, take a molecular approacbince the box deformation and coordinate displacem¥nts
by twice inserting the field of Eq16) into Eq.(31), whichis  —X'=X+¢,V*¥(X) inevitably will change the potential
equivalent to calculating the effect of a rigid-body center ofenergy of the system, the momenta have to change to keep
mass rescaling on the molecular pressure in(Bg). Acom-  the total energy of the system constarP—P' =P
bination of one atomic and one molecular deformation is alsot £ ,VP*(X,P) (The particular case ok being too low to
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compensate for a rise ifp is too improbable to be of any coordinates. The vector field was introduced merely to facili-
effect [2]). Introducing the combined vector field into Eq. tate the calculation of the latter contribution, whenever the

(A1) gives two terms can be treated independently. For long molecules
this is no longer the case.
Q(E’E):I f SID(X+ e,V h+e,beh) Consider the nearest image vector between two atoms in
the box,
h
aX |l ap’ Faiei =X~ Xy~ BN[E ™06 = X, - (BY)
+K(P+g,VPY) —E}| —| | == dX dP. _ _ o
IxX || P The atom with coordinates,; (by definition in the central

(A3)  box) belongs to one particular unfolded copy of thi mol-
ecule, denoted by (i), whose centeg, ;o heed not neces-
Here the momentum vector field must be chosen such thafarily lie within the box. The combined box and coordinate
the argument of theé function is, to first order ire,, iden-  deformations, treating the molecules as rigid bodies, change

tical before and after the deformation, hence this nearest image vector into

N I N . P - -

E V<V, D+ Ei(bab)T‘FE vPe. %:O_ (A4) i = X~ Xpj T (8= DRy iyo=Xu(jro) — (€h)

= - = ' xn[(eh) ™ Xy =X, + (6= 1) (Rniiyo—Xu(jyo) -
Because the argument of tlidunction is constant, this func- (B2)
tion needs not be Taylor expanded. It is then straightforward
to show, see Eq6), that If the range of the potential is short relative to the box di-

T mensions, them has the same value in both the above ex-
,ﬂ_a:%<vx_vxa+vp_vpa>E, (A5)  Pressions. A further reshuffle of terms gives

. vl =ry it e— D (X 0= Xy no—m[h1(x,,—x,;
where the average is over states of equal energy. Mo = hie T (€~ D(Rnyo—Xugno— [ (xy— %) ])

An obvious, but in no way unique, choice for the momen- =Ty T (€= D (X o= Xnit T it X0 —Xui0)-
tum vector field is a uniform scaling/P“= yP. From Eqg. ,
(A4) follows i, pj
(B3)
1 Xa oP (hah)T
Y=ok VI Vx®+ a_b'(k—) NP (AB)  The vectorz; ,; connects the centers of the unfolded mol-
ecules\ and w whereby, for a given copy of, the matching
and substitution of this field in EGA5) gives copy of u is selected by the condition that it minimizes the
distance between their respectiitb andjth atom. Put dif-
7Ta=kB—T<V><' VX)L — kB_T(3N _ 2)<i VXV D ferently, it describes the itir_1er_ary of going fr(_)m the center of
\ \ 2K the unfolded moleculg: to its jth atom, leaping from there
JD to the nearest copy of theé atom, and continuing from there
+—:(b*h)" > , (A7)  to the center of this unfolded copy of themolecule. With
dh E the displacements of E¢B3) one easily constructs a pres-

sure expression of the form of E@L4), yielding
where we have use¥-P=3N and where the-2 arises
Ny, N

from the kinetic energy term contained i Note that the nkaT 1/ LU
. . . . . . B
temperature in the microcanonical ensemble is not defined in wazTAa—v 2 ' Z o - D2y 4j
the usual way, but bj2] A<pi=1j=1 I\ uj
noNy "
1 3N-2/1 1 9y
R D -5 —b%zi i ). B4
T—kB 2 <K>E- (A8) V<)\Zli§<:j arxi,)\j AR ONPY| ( )
This pressure expression, in combination with the vectorfhis is the correct expression for the pressure in a periodic
field of Eq. (9), is in agreement with the literatuf@1]. system of long molecules, as first derived by Theodorou
et al. [12]. The intramolecular term arises, despite the rigid
APPENDIX B: LONG MOLECULES body translation and despite the intramolecular forces sum-

ming up to zero, because the changing periodic boundary
The derivation of Sec. Il is slightly more involved for conditions effectively alter the distances, and hence the in-
long molecules, e.g., polymer chains, which are longer thareraction energies, between atoms of Ntb molecule and
half the periodic box dimensions. Recall that the last twothe atoms of the periodic images of th¢éh molecule. For
terms in Eq.(8) describe the energy change of the systemsmall molecules, where the nearest image vector can be ex-
under a simultaneous change of the bbx;eh, and the pressed as
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Mg = (% = Ragiyo) = (X = Ku(190) + Faiiro = Xou(io) two atoms contribgtes to the poten~tial, i.e~.,rM,Mj=xM
e ~ —X,j, the vector fieldzy; ,;j=(e—1)(X,(yo—X,(j)0) need
—hn[h™ " (Rxiyo=Xu(o)] (BS 1ot be identical to €— 1) (X (ijo— X.(j)0). hence Eq.(17)

for all i andj, we find thatz,; ,;j="r\0,.0 and the pressure of with its current atom-based definition bf and W holds for
Eq. (18) is recovered. Note that if the interaction betweennonperiodic systems only.
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